Lab Report

Line Following Robot Lab

Mary Piper Blayney, Jack Turk, and Christian Niese

10.28.2025
Engineering Academy

Introduction

In this project, we were tasked with making a robot that could follow a lined trail
through a light sensor. We had the choice of following a red or black line, which meant
we had to choose coding with reflected light or color coded code. Our group chose to use
reflected light and to follow the black light. To follow the line, we needed to make a robot
that could drive and turn well to follow. Once all the groups in our class had made robots
and coded them, we ran our robots against each other and timed to see whos was the
fastest. The people who worked on this project include Mary Piper Blayney, Jack Turk,
and Christian Niese.

Brainstorming

Once we started talking about what we wanted to do with this project. Our initial plans
include having our back wheels be powered and independent, and a ball wheel that
makes turning a lot easier than trying to deal with another wheel on the front. We also
knew we wanted our robot to be smaller and as simple as possible to help keep things
moving and help us not overcomplicate the design process.Designing the robot

Iteration 1

This is the top and bottom of our group's first iteration. As you can see, we used two
separate motors and the ball wheel to optimize turning. We also used smaller wheels and
attempted to make our robot on the smaller and more simple side. Another thing we
tried with this iteration includes a gear ratio on our wheels to try to make our robot even
faster. While these pictures do not include it, we had our light sensor on the back in this
iteration. This iteration was a good starting point for us to improve on.

Iteration 2

This is the top and bottom of our group's second iteration. Some differences from
iteration one include where the light sensor goes (was in the back) plus added line
management and a lego person. While this iteration worked ok, the front was very
clunky and our gear ratio was not very helpful for this project. We kept the ball wheel
and the smaller wheels, as turning was ok and the smaller wheels plus motors on the
side were helpful to keep the light sensor close to the ground for readings.

Testing Iteration 2

While in this design stage, we took a video of our robots movement to record progress.
This video shows how all the pieces were working together and a baseline of what our
code looked like at the time.

Click to watch video

https://drive.google.com/file/d/1g9_zU8v9UvDEywa638BAD4f-cUGkXEu4/view?usp=sharing

Iteration 3

These pictures show the top, back, and bottom of our third iteration. What we changed
from the second iteration includes the placement of the light sensor (again), the
placement of the line management, and the placement of the lego girl. We also got rid of
the gear ratio, as we found it unhelpful and it was much easier to get rid of it. For our
new line management, all cords were taken, twisted to shorten, and then placed on a rod
meant to stick blocks together that was stuck into a hole on the top, and then capped with
a 3 holed block. This definitely was better than having the cords wrapped around and
keeps them all in one place, but there is definitely still room for improvement there.

Testing Iteration 3

While in this design stage, we took a video of our robots movement to record progress.
This video shows how all the pieces were working together and a baseline of what our
code looked like at the time.

Click to watch video

https://drive.google.com/file/d/1EIo5wh3YqbIuBTKIx-drI8HnhzSWh8sG/view?usp=sharing

Coding the robot

Right from the start we wanted to use a PID controller for our robot to follow the line. We
believed that most groups would do a standard two case algorithm, which would give us
a competitive advantage. Although it had major upsides in terms of speed and
smoothness, using a PID controller had a massive downside in its complexity. We had to
spend the first couple of days just trying to understand what a PID controller was, how to
implement it, and how to tune it. Although it didn’t go as smoothly as planned, we are
happy that we tried it.

Stage 1

We began implementing our PID controller on a simple rectangle at our table. Our first
iterations just implemented a P component, and were able to navigate the course. It
wasn’t ideal, however, as there was no dampening of the turning and thus the robot
would constantly be correcting, overcorrecting, and/or recorrecting itself to the line.

@ set movement motorsto C+D v

@ set movement speed to ° %

Stage 2

Once we achieved our first working implementation of the PID controller, the real course
was built and we graduated to it. We began the process of implementing both the I and D
components, as well as tuning the overall algorithm. This is where our struggle set in. We
spent 3 whole class periods tuning, and returning with no improvement. Sometimes the
robot would increasingly oscillate, and other times it just wouldn’t turn sharp enough.
Looking back on it, it is very obvious why the robot struggled, but at the time we still
didn’t have the greatest conceptual understanding on why the robot was failing.

® set movement motorsto C+D »

@ set movement speed to @ %

Error v to @ B v reflectedlight - (@)
pFix v to Error ‘°

Integral ¥ to Integral + Error

iFix v to integral * ()

Derivative v to Error - lastError

dfix v to Derivative * ()

lastError v to Error

start moving | dFix + | pFix + | iFix ‘o

Stage 3

After more research and a better understanding of PID controllers, we were able to spot
our problem and fix it. It turned out that pretty much every value was too high, but
especially our P component. Our P component was as high as 4 at one point, and we
brought it down to .6-.8. We also increased the I component a bit to help on the sharper
turns, as well as continuously tuned the D component when other components were
changed. Finally, we added an upper limit on the integral to the point that the max
integral + max proportion would equal the max turning rate. This helped prevent
overshoot which was a common problem.

WIEN programSEIs

setmovement motorsto. CH4D =

set movernent speed io @ 9%

lastEmor = to o

Integral = to °

==t | proporfionCoef = o e

==t | integralCoef » m@

forEver
st N Erron = b @ B = Sreflected Bghts - a

set S N pFncses ol BEmors = 8 propormoniGoet

st Indegral = ol Hintegrall + Erorn

Integral . = m- m -@ * N proparsonGoetd || SimegralCoet;
et Integral e o @ - @ -@ = NpmoporfionCoefs | SintegralCoef:

Integrals = @ - a -@ * N pmoportionGoetd | SimegralCoef,
st [nteqral = o m - a -@ = | proportionCoefd | F SindegialCoef

sets NiFpcw ol Sntegrall + RintegralCoef

cef S N Denyvatnve s tiol SEqord - 8lasiEmop

el [zt bl fenvaiived = {§])
Sef lasttmon = Ho) N Ermor

et Rintal e iin] WoFics -+ SIEnd - Bdb

@9 start moving | ot

Stage 4

Once succeeding at 30% speed, we tried to increase to 40% speed and later 50%.
Unfortunately, we once again struggled to successfully tune the PID controller at these
new speeds and ultimately had to stay at 30% speed so that we could complete the
course. Although it may not be the fastest, it’ll be smoother than 90% of the other robots.

Calculation of the top speed of the robot

Through online research we know that the lego motors run at 155 rotations per minute.
We then used dimensional analysis to convert the speed from rotations per minute to

econd a
Lsgd "@ .“

meters per s nd found the top speed to be .349 m/s.

)

Final run against classmates

When we competed against our teammates, we had two trials that we did. Our teacher
picked a random number on the board for us to start at and if we were going clockwise
or counterclockwise for the first time and the second time he picked those two but we
were able to change one. The first time, we started at 4 and went counterclockwise and
the second time, we started at 6 and went counterclockwise. On our first trial our time
was 72.6 seconds. On our second trial our time was 71.4 seconds, which is one second
better. We got fourth place out of the people in our class and we had one the least
amount of oscillations during our runs.

S L N R e
Team Trial #1 Start Time Trial #2 Start Time Fastest

i Juliet 2, cow 43.2 1. cw 335 335

i Hotel 2, cow 69.5 2, cow 522 52.2

Charlie 5, CW 62.3 6, oW 62.8 623

India 5, cow 74T 6, ow 73.6 736

Bravo 3, oW 1331 2, oW 1212 121.2
Conclusion

In this project, we created a robot that ran with a PID and a light sensor that we got to
work very well with no oscillations other than while turning. When we competed against
our classmates, we had the fourth fastest time in our class at 71.4 seconds. When racing,
we chose to only race on the black tape which was longer but thats the one our code was
best on. If we were to redo this project, we would try to get our robot faster or maybe try
to color coded line too instead of just doing the black line.

	Lab Report
	Introduction
	Brainstorming
	Iteration 1
	Iteration 2
	
	Testing Iteration 2

	
	
	
	
	
	Iteration 3
	
	Testing Iteration 3

	Coding the robot
	Stage 1
	
	
	
	Stage 2
	Stage 3
	Stage 4

	
	Calculation of the top speed of the robot
	Final run against classmates
	Conclusion

